Studies of nucleotide binding to the catalytic sites of Escherichia coli betaY331W-F1-ATPase using fluorescence quenching.

نویسندگان

  • Vladimir V Bulygin
  • Yakov M Milgrom
چکیده

Most studies of nucleotide binding to catalytic sites of Escherichia coli betaY331W-F(1)-ATPase by the quenching of the betaY331W fluorescence have been conducted in the presence of approximately 20 mM sulfate. We find that, in the absence of sulfate, the nucleotide concentration dependence of fluorescence quenching induced by ADP, ATP, and MgADP is biphasic, revealing two classes of binding sites, each contributing about equally to the overall extent of quenching. For the high-affinity catalytic site, the K(d) values for MgADP, ADP, and ATP equal 10, 43, and 185 nM, respectively. For the second class of sites, the K(d) values for these ligands are approximately 1,000x larger at 8.1, 37, and 200 microM, respectively. The presence of sulfate or phosphate during assay results in a marked increase in the apparent K(d) values for the high-affinity catalytic site. The results show, contrary to earlier reports, that Mg(2+) is not required for expression of different affinities for a nucleotide by the three catalytic sites. In addition, they demonstrate that the fluorescence of the introduced tryptophans is nearly completely quenched when only two sites bind nucleotide. Binding of ADP to the third site with a K(d) near mM gives little fluorescence change. Many previous results of fluorescence quenching of introduced tryptophans appear to require reinterpretation. Our findings support a bi-site catalytic mechanism for F(1)-ATPase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the location and function of tyrosine beta 331 in the catalytic site of Escherichia coli F1-ATPase.

1) Using a combination of site-directed mutagenesis and fluorescence spectroscopy we have studied the location and function of residue beta Y331 in the catalytic site of Escherichia coli F1-ATPase. The fluorescent analog lin-benzo-ADP was used as a catalytic-site probe, and was found to bind to three sites in normal F1, with Kd1 = 0.20 microM and Kd2,3 = 5.5 microM. lin-Benzo-ATP was a good sub...

متن کامل

The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites.

Two mutants of the Escherichia coli F1 ATPase, betaY331W:E381C/epsilonS108C and alphaS411C/betaY331W/epsilonS108C, have been used to relate nucleotide binding in catalytic sites with different interactions of the stalk-forming subunits gamma and epsilon at the alpha3beta3 subunit domain. Essentially full yield cross-linking between beta + gamma and beta + epsilon, or between alpha + gamma and a...

متن کامل

Structural mapping of catalytic site with respect to alpha-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer.

The intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1 is a very sensitive probe to differentiate nucleotide binding to catalytic and noncatalytic sites (Divita, G., Di Pietro, A., Roux, B., and Gautheron, D. C. (1992) Biochemistry 31, 5791-5798), the catalytic site saturation producing quenching of Trp-257 fluorescence (Divita, G., Jault, J.-M., Gautheron, D. C., a...

متن کامل

Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes.

Equilibrium nucleotide binding to the three catalytic sites of Escherichia coli F1-ATPase was measured in the presence of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin to elucidate mechanisms of inhibition. Fluorescence signals of beta-Trp-331 and beta-Trp-148 substituted in catalytic sites were used to determine nucleotide binding parameters. Azide brought about small decrease...

متن کامل

Detecting precatalytic conformational changes in F1-ATPase with 4-benzoyl(benzoyl)-1-amidofluorescein, a novel fluorescent nucleotide site-specific photoaffinity label.

A novel photoaffinity label for studies with the F1-ATPase has been synthesized and found to be an effective reporter of subunit conformational changes that occur in this enzyme upon multiple nucleotide-binding site occupancy. The new probe, 4-benzoyl(benzoyl)-1-amidofluorescein (BzAF), which possesses structural similarity to purine nucleotides, exhibits bifunctional characteristics that enabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 11  شماره 

صفحات  -

تاریخ انتشار 2007